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J.  Phys. A: Math. Gen. 20 (1987)  L273-278. Printed in the UK 

LETTER TO THE EDITOR 

Voigt lineshape function as a series of confluent 
hypergeometric functions 

R S Keshavamurthy 
Reactor Physics Division, Indira Gandhi Centre for Atomic Research, Kalpakkam- 
603 102, India 

Received 1 December 1986 

Abstract. A new series of confluent hypergeometric functions is investigated. It is shown 
to have the Voigt lineshape function as its sum. Kummer transformation is applied on 
this series to obtain a much faster converging series for the Voigt lineshape function. The 
well known asymptotic behaviour of confluent hypergeometric functions is made use of 
to also obtain an asymptotic series for the Voigt lineshape function. 

Confluent hypergeometric functions have important applications in a wide range of 
physical problems. Extensive discussion of their mathematical properties can be found 
in many of the standard reference books (Erdilyi 1953, Slater 1960, Abramowitz and 
Stegun 1970, Magnus et a1 1966). However investigations on series of confluent 
hypergeometric functions are rather limited and most of the well known series are 
listed by Erdilyi (1953) and Hansen (1975). On the other hand, the Voigt lineshape 
function also occurs in a wide variety of fields such as the study of radiative transfer 
in stellar atmospheres, laser optics, plasma studies, nuclear physics and reactor physics. 
As is well known, evaluation of this function is not easy and a large number of papers 
have appeared in the literature devoted to the study of its mathematical properties 
useful not only for purposes of numerical computation but also for theoretical studies, 
see e.g. the review by Armstrong (1967). Analytic approximations to this function are 
still of interest (Nemeth et a2 1981). In this paper we investigate a new series of 
confluent hypergeometric functions. We show that this series is convergent and has 
the Voigt lineshape function as its sum. Application of Kummer transformation on 
the series gives a transformed series which converges much faster than the original 
one. We also obtain, making use of the known asymptotic behaviour of the confluent 
hypergeometric functions, an asymptotic series for the Voigt lineshape function. We 
show how this asymptotic series reduces, under certain approximations, to the one 
found in the earlier literature (Dresner 1960). 

We start with the confluent hypergeometric function of the second kind, U (  a, b, z)  
given (see e.g. Slater 1960) by 

This is related to the Whittaker function WK,+ through 

W~,"Z)=~-~'~~''~++U(~+II - K ,  1+2p,  2). 
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We take .z to be a real quantity which we denote by R. We also write, for later 
convenience, 

R = t ( u 2 + e 2 )  ( 3 )  

( 4 a )  

and also set a = 2n + 1,  6 = n +$. The integral representation of this U function is 

U(2n+1,  n + $ ,  R ) =  R - 1 / 2 - n U ( i + n , f - n ,  R )  

d t  
- 12 e 

the relation ( 4 a )  being a Kummer transformation. We now consider the series 
a) 

S = ;  u2"T(n+;)U(2n+1, n+$, R ) .  
n =o 

The convergence of the series can be seen as follows. Using (4c )  we have 

t2" lom ( t 2 +  R)'"+' d f  4 u2"r( n +;) ~ ( 2 n  + 1 ,  +;, R )  < U 2 n  

Therefore 

(7) 

Since U ~ / ( U ~ + @ ~ ) < ~ ,  the series on the RHS sums up to J u 2 + 0 2 / 8  (Lebedev 1972, 
Hansen 1975) and we have the inequality 

s< (8) 

and hence the series (5) under investigation is convergent. 

is just the real part of the complex probability function w(u+iO). Explicitly, 
We will now show that the series ( 5 )  sums up to the Voigt lineshape function which 

S = f C  u 2 " T ( n + f ) U ( 2 n + l ,  n + $ ,  R )  

It should be noted now that the maximum value of the function 

f( t )  = u 2 t 2 / (  t 2 +  R ) 2  O S t < c o  

obtained from 

(df/dt) ,=, , ,  = 0 

is 
f, = u 2 / (  u2 + e*)  < 1 t ,  = J R .  
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That this is really the maximum in the range 0 S t <CC can also be seen through 

where 6 is an arbitrary number such that 0 S 1, + 6 < 00. This function f (  t )  is plotted 
in figure 1. Therefore 

One can easily recognise this integral as the real part of the complex probability 
function except for a constant factor. Thus we have the result 

e 
- f u 2 " r ( n + f ) U ( 2 n + 1 ,  n + $ , R ) = R e  w ( f u + i f e ) .  
277 "-0 

where Re w ( f u + i f e )  represents the real part of the complex probability function, 
w ( f u + i  40) .  The series (14) has been obtained for the first time to our knowledge. 
The Voigt lineshape function, in the notation of Armstrong (1967), is 

K (f u, f e)  = Re w (f u + i f e) .  (14') 

1.0 , ,~ 

t/iR 

Figure 1.  The function f(f) for various values of x (-, x = 1.0; - - -, x = 2.0; --, 
x = 5.0, - - -, x = 100.0). The parameter x is defined through (15c).  
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The Doppler broadening functions 4 and x which are used in reactor physics calcula- 
tions and also by experimentalists doing neutronic resonance reactions, are 

(15a) $(x, e ) = &  40 Re w ( f u + i f O )  

~ ( x ,  e )=J; ; f e  Im w( tu+ i fe )  

4 84 = ~ x + ( x ,  e )  +- - . e2 ax 

Here 
U = xe = ( E  - E,) e / f  r e = r/A A = (4kTE0/A)’/’ ( 1 5 ~ )  

where E, represents the resonance energy E, the energy at which the broadening 
functions are to be calculated, r is the width of the resonance which gets broadened 
due to thermal motion of the target atoms and A is the Doppler width for the nucleus 
(A being its mass number) at temperature T. The series (14) gives for $(x, e) at x = 0 

+(o, e) = J;;f e ee2l4 erfc 4 e (15d) 
in agreement with earlier results (Dresner 1960, Armstrong 1967). 

The series (14) would be more useful as an analytical expansion for the Voigt 
lineshape function if it could be transformed into a faster converging one through a 
series transformation. We make use of one of the earliest known transformations, due 
to Kummer, for this purpose. To apply this transformation, we need to know the 
behaviour of s k ,  the kth term of the series (14) as k + Co. This can be written as 

s k  = ( e / 2 ~ ) u Z k r ( k + f ) ~ ( 2 k + i ,  k+;, R )  

where 

g( t )  = ((U’+ e’)/U’)f(t). (16’) 
The function f ( t )  has already been defined through (10) and is plotted in figure 1 .  
The function g(  t )  has the same shape as f( t )  but has the maximum value one. It is 
clear that higher powers of g ( t )  become sharper and sharper and we can write 

We now consider a comparison series as given by the RHS of equation (7), namely 

The kth term of this series is 

(18a 

(186 
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We therefore have 

Iim skjck =e -R  
k - a  

a quantity independent of k. Thus we obtain, by Kummer transformation of series 
(14), the result 

K (i U, 0 )  = Re w (i u + i i e )  
53 

= e p R +  ( ~ , - e ~ ~ c , ) .  
n = O  

This series converges much faster than the original one. For the n = 0 term in (20), 
we have 

This expression for the n = 0 term only is plotted in figure 2 (broken curve) along with 
some actual values of K ( u ,  0 )  (Abramowitz and Stegun 1970) for comparison. In 
many physical problems the cases where 6 is small are of more practical importance. 
In reactor physics problems, for example, the important range for 0 is -10-'-10-'. 
In such cases, as is indicated by figure 2, one may use the simple form 

for approximate calculations. As x + CO (i.e. R + a), since 

e-R e-R 
erfc(v'R)--- 

GR- J;;; e J G 7  
-___ 

0 1 0  2 0  3 0  
U 

Figure 2. Comparison of K"=O( U, e) (- - -) calculated using expression (21) with the actual 
values (-) (taken from Abramowitz and Stegun 1970) of the Voigt lineshape function. 
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we find again 

+,+& e)  - 1 / ( 1  +x2)  (24) 

Two well known properties of the confluent hypergeometric function U prove to 
the well known Lorentzian behaviour of +( x, 6 )  (Dresner 1960) as x -+ 00. 

be quite useful in this context: 

This asymptotic expansion (ii) for the U function leads us to an  asymptotic series for 
+(x, 0): 

If we retain the r = 0 term only in this expansion, we have 

It is interesting to note here that if we retain the (n  = 0, r = 0), ( n  = 0, r = 1 )  and ( n  = 1 ,  
r = 0) terms in (27a) only, then 

2 

which may also be written as 

1 

This expression is well known (Dresner 1960) and  is used in many cross section 
processing codes in reactor physics. 

It is a pleasure to thank P Bhaskar Rao, T M John and  K P N Murthy for discussions. 
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